
- Application Note -

	II ······
Title	Analysis for composite biomaterial of polycaprolactone and tricalcium
	phosphate with Raman spectroscopy
Introduction	Polycaprolactone is well known for biodegradable polymer and used as a material for scaffold in
	tissue engineering. Tricalcium phosphate is also known for bioabsorbable tribasic calcium and
	phosphate and affect positively on bone tissue regeneration. In many studies, the composite material
	of polycaprolactone and tricalcium phosphate has excellent effect on bone tissue regeneration. The
	polycaprolactone and tricalcium phosphate are white colored both therefore it is difficult to know the
	dispersion of tricalcium phosphate in polycaprolactone with a microscope. Raman spectroscopy is a
	nondestructive analysis method and can easily identify the materials without sample preparation.
	Here, we observed composite material of polycaprolactone and tricalcium phosphate with confocal
	Raman spectroscopy system, XperRam C series.
Mateirlas	Composite material (PCL-TCP) of polycaprolactone (PCL) and tricalcium phosphate (TCP) were
& Methods	prepared by melt-blending technique. Raman spectrum and Raman images of PCL and PCL-TCP
	were obtained with confocal micro-Raman spectroscopy instrument, XperRam C series (XperRam
	C5). Especially, Raman imaging was performed at phoisphate symmetric stretching vibration of
	calcium (962 cm ⁻¹) and CH stretch band (2907 cm ⁻¹) for detecting TCP and PCL each. To evaluate the
	dispersion of TCP in PCL, two Raman images of phosphate symmetric stretching vibration of
	calcium and CH stretch band were merged. The Raman imaging area was 100 $\mu m \times 100 \ \mu m$ and step
	size was 1 μm.
Conclusion	Averaged Raman spectra of each membrane were measured by XperRam C5 (Figure). Blue-labeled
	peaks show typical vibration modes of PCL. Red-labeled peaks are considered as intrinsic peaks of
	TCP. Any componential difference wasn't found in optical images. However, PCL-TCP was distin-
	NANOBASE

guished clearly through Raman map image in comparison to PCL membrane. At merged map image, highly well-blended TCP particles were exhibited in PCL membrane. Consequently, this result proves that Raman spectroscopy is a powerful and effective tool to evaluate composite biomater- ials. These composite biomaterials can be used as 3D-printed bioscaffold which have abilities at guided tissue regeneration. Furthermore, Raman spectroscopy shows the possibility of numerous applications in biomaterials.

